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A New Edge Element for the Modeling of Field
Singularities in Transmission Lines
and Waveguides

Jo€ M2 Gil and Jon P. WebbMember, IEEE

Abstract—Edge finite elements are widely used in the analysis
of waveguides and transmission lines. They have tangential con-
tinuity and they do not produce spurious modes. However, they
cannot model the singular behavior of the transverse fields in the
neighborhood of sharp edges. This fact limits the accuracy of the
representation of the fields and the order of convergence of the
method. In this paper, we present a new edge element in which
the singular approximation of the three fields components and the
correct modeling of the curl is incorporated. The development
of the basis functions is described. Some numerical results for
waveguides with sharp metal edges are shown in order to validate

- N N
this theory. L1 1 4

Fig. 1. The new singular-edge element.
I. INTRODUCTION

HE presence of field singularities in many common This paper introduces a singular-edge element with a correct

transmission lines and waveguides has led to seveagproximation of the singular transverse-field component as
publications over the last few years, which have focused wrell as the axial component, according to Meixner's theory
the improvement of the convergence and approximation [&. The curl of the transversal field is also adequately mod-
the unknown function in the finite-element method (FEM). Ieled. The result is an element which can easily be incorporated
the scalar case (quasi-TEM analysis of transmission lines a@nda standard finite-element code and has important improve-
homogeneous waveguide analysis) special finite elementsaents over other methods with regard to the convergence and
called singular elements—have been developed [1], [2]. approximation of fields.

In the case of full-wave analysis, a nodal element with Some common waveguides with sharp metal edges are
singular approximation of transverse-field components wasalyzed in order to check the improvement achieved by using
presented in [3]. Edge elements, which avoid the problem tfe new element.
the continuity of the transverse component on sharp edges
and remove the spurious modes, have been quickly adopted Il. THE NEw EDGE ELEMENT

by the users of the_ FEM. However, these elements do .nOtThe new edge element is an hybrid nodal/edge element
properly model the singular field because they use polynom|aI%h six tangential unknowns associated with the edges, and

d . W
as ba_5|s fur_u_:tlons [4]. When the problem_to be analyz%cIJ axial unknowns associated with the vertices and midpoint
has singularities, the order of convergence is very poor an

; : . de of the edges (see Fig. 1). For the electric field, the
the transversal fields in the singular zones are not accuratﬁé(nsverse componet, is approximated by using vectorial
t
computed. . . .. shape functions and the axial componéht by scalar shape
In [5], a new edge element with singular approxmaﬂoyunctions (the same is true for the magnetic field)
of the fields was presented. The relative complexity of this ‘
element and the lack of results published to date have justifi&d

the search for another solution. Behavior of Field Components in the

Neighborhood of Sharp Edges
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results. The integrals which appear in the formulation could
also be done in closed form with the help of a conventional
symbolic mathematics program, but this option is complicated
and it ruins the simplicity with which the new element can be
incorporated in a standard finite-element code.

(@.1) C. Approximation of the Transverse Component
of the Unknown Function

The transverse field is approximated in the form

Ey =Ey,, + B,
3
2 P - -
0o g Ei. =Y EiNi(p, o)

—

Fig. 2. Mapping of new element. ZG
By, =Y ENip o) (6)

regular. On the other hand, the behavior of the transverse curl i=4
must be wherep, ¢ are triangular polar coordinates (see Fig. 2). In the

following, we show how the basis functiodg; are built.
The simplex or baricentric coordinates for a triangle Are
These singular behaviors are represented by approximating the and L3. They are related tp, o as follows:
unknown function in the following way.
9 way Li=1-p Ly=p(l-0) Ls=po. )

vtht — 7’”. (2)

B. Geometric Transformation Starting from these, we build the following vector basis

We begin by describing the geometric transformation erfidnctions:
ployed to move the approximation of the field from local to ]\71 — L1 VLy— LyVL; = (1= 0)Vp+ plp — 1)Vo
real space 4, v). R )

The elements of the mesh in real space are mapped into Aj? =12Vl = L3Viy =p"Vo
the reference element (unit square) by means of the following N3 =L3VL; — LiVL3=—0oVp+ p(p — 1)Vo. (8)

transformation (see Fig. 2): L .
fon ( 9. 2) The approximation of the regular term (dynamic compo-

t—t1=pllta —t1) + (t3 — t2)0], t=x,% (3) nent)then corresponds to an ordinary Whitney element [7]. It
) ) . contributes a curl which is constant.
wheret;, ¢ = 1, 2, 3 are the coordinates of the vertices of the g4 the singular term, three degrees of freedom (one on each

element, ang, o are the triangular polar coordinates.  gqge) are added to the Whitney element. To do this, we define
It can be seen that at the poimt= 0, the Jacobian vanishes
and the transformation is not invertible at this point. The Ly=1-p"t
straight lines defined by = constant are converted to straight Ly =p(1-0)
lines passing through vertex one. s
By studying this geometrical transformation, we can make
the following conclusions: and we build the two following functions:
r=R(o)p Ny=V(LL3) = (1- o)1 —vp" " )Vp+(p" = p)Vo
6 =0(0) (@) Ne=V(LIL}) =o(1l—vp" Y)Vp+(p—p*)Vo. (10)

where ¢, #) are cylindrical polar coordinates centered on |n this way, the singular term (5) in the approximation of the

vertex one. We can see that radial distances in real ajgnsverse component (static term) is incorporated, as can be
local spaces are proportional and, therefore, along any radigkn. It is also obvious that these functions are irrotational and,
direction o = constant, passing through the singular poinkerefore, they do not contribute any term to the curl. In order
(vertex one), the singular behavior given by (1) and (3 obtain the corresponding approximation of the transverse

becomes component of the curl, the basis is completed with
E, —pvt Ns = p"1t2(1 = 20)Vo. (11)
E. —p”

. N It is easy to prove that
vta;Et —p . (5)

. o _ V x N5 = Cp(1—20)7 (12)
In order to do the integration in the unit square, a 16-

point quadrature formula has been employed. We have fountiere C is a constant, then obtaining the expected behavior
that this order of integration is enough to get satisfacto().
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By observing theV, functions, we can see that each has onlglement allowing for the discontinuity of normal components,
a tangential component along its own edge, but not along tbempatibility with standard edge elements along the edge
other edges. The tangential continuity between the elemeafposite to the singularity, adequate modeling of the curl, and
can be easily achieved by matching the paramefgérsn removal of spurious modes.
the usual way. It can also be seen that if we associate the
vertex one with the singular point, we obtain an element that
is compatible with regular (fully first-order) edge elements,
adjacent to the edge opposite vertex one. In fact, along thisn order to check the behavior of the new element we

Ill. SOME NUMERICAL RESULTS

edge p = 1) we have discretize the classical functional

Et(p = 1) = [EQ + E:)(]. - 20)]VU (13) FE — / (Vxﬁ)* [M1]_1(V$E) Ao — kg / E* [57]Ed9
which has the same variation as a regular fully first-order ¢ ¢ (18)
element.

o o in terms of the electric field [9], or
D. Approximation of the Longitudinal Component

of the Unknown Function Fi :/ (Va:ﬁ)* [s,,]_l(Va:ﬁ) 4 — k2 / i [N1’]ﬁd9
A nodal approximation supported by the vertex and the Q Q

midpoint node of the edges, is enough to approximate the (19)

axial component. However, we again need to incorporate the

variation predicted by the theory (1). This is achieved by usir@ terms of the magnetic field [10], whefg,] and[e,] are the

the following six-node scalar singular element described in [gElative permeability and permittivity tensors, respectivély,

In this element, the axial-field component is approximated b the cross section of the waveguide dndis the free-space

means of the following: wavenumber
6 2 2
= W&o ho- 20
E. :Z E. L. (p, o) (14) Fo = weo (20)
=t 1 We analyze several waveguides with field singularities,
L. (p,o)=1+ 3-1 [p(2 = 5) = p"] comparing the results obtained with the new element and
p- those calculated by using a fully first-order edge element
L., (p,o)=(1- 0)[ o _ p”< 1 + 20)} with six degrees of freedom and regular approximation for
p-1 p-1 the transverse component and a six-node Lagrange element
L..(p,o)=0 pe 1 +2(1- o) for the axial component. When we use a mesh with the new
P B-1 B-1 element, the singular point is surrounded by these elements.
20-0), , In each case, the size of the singular elements is chosen to
L.,(p,0)= /JT (p” = p) be much smaller than the cutoff wavelength of the mode we
L..(p, o) =4p"o(1 - o) are studying.
20 v
Ls(p, 0) = -1 (" =p) A. Rectangular Vaned Waveguide
/3:2(1—10_ (15) The cross section is given in Fig. 3. This structure has

a metallic edge which is associated with a singularity of

It is easy to demonstrate that the unknown function isrder = 1/2. There is a plane of symmetry, but only the
approximated as follows: modes with a magnetic-wall condition on this plane will be
singular. We have calculated thig with the phase constant

un(p, 0) = P(o)p” + Q(p, 0) (16) B = 1 rad/cm, corresponding to the first TE singular mode
where P and  are polynomials. and then the cutoff wavenumbgy (20). The convergence of
The radial gradient is the method by using the new singular elements (four elements
OF surrounding the singularity, the rest regular elements) and by
_f =a,(0) +,,a2(a)pv—1_ (17) using only regular elements in the mesh has been studied.
I In order to properly study the convergence, uniform meshes

In this way, the longitudinal component of field and ithave been employed, and the number of degrees of freedom
gradient are properly modeled. Along the edge opposite imincreased by means of successive regular refinements of the
vertex one, this element is compatible with the Lagrangwiginal mesh. The results for the., by using bothE- and
guadratic elements. H-field are given in Fig. 3. In this figure we can see that by

In summary, the developed element has the followingsing the new elements, the value of convergence is achieved
characteristics: singular approximation of the three field com4th much fewer degrees of freedom. This can lead to an
ponents according to the Meixner's theory for any ordémportant computational economy and a better approximation
of singularity, tangential continuity along the edges of thef divergent transversal fields in the neighborhood of sharp
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Fig. 3. k. (rad/cm) of the first singular TE mode, for the rectangular vaneliig- 5. k. (rad/cm) of the fundamental mode, for the single-ridge waveguide

waveguide 4 = 1 cm), versus the number of degrees of freeddia and (A = B = 0.5 cm; « = b = 0.25 cm), versus the number of degrees

H-field). a: with singular elementsy: only regular elementss: [2]. 0{ freedom 4[52] and H-field). a: with singular elements¥: only regular
elementsm: [2].

B. Single-Ridge Waveguide

The geometry is given in Fig. 5. The order of singularity is
A = 2/3 and it has a plane of symmetry; therefore, we analyze
one half of the structure. Again, we study the convergence by
using regular refinements of uniform meshes. In one series
of these meshes, six singular elements surrounding the edge
are used and in the other series only regular elements are
employed. The mode analyzed was the fundamental (TE). The
results for both thek- and H-field can be seen in Fig. 5. It
can also be noticed how the value of convergence is achieved
much more quickly by using the new elements instead of using
s + regular edge elements.
AR - In Fig. 6, we again show both transversal and electric fields

1 ] L 4 computed from singular functions in six singular elements
1 A [ X surrounding the corner (and from regular functions in the rest)
A SRR PPN " in a mesh with 24 elements.
1 N é M
iR ~ T . .
- ~ f LA C. Double-Ridge Waveguide

The section is shown in Fig. 7. This structure has been
> I s ! solved by many authors and many different methods. Because
1 i of the symmetries, only a quarter of the section is meshed and
we again employ meshes with singular elements and with only
T 1 regular elements. Because of the geometry of this structure,
uniform meshes of the section cannot be obtained; therefore,
it is not strictly correct to obtain a curve of convergence as in
Fig. 4. Transverse electric and magnetic fields, calculated by using f thre prevpu; cases. However’ by observing the .reSU|tS givenin
singular elements surrounding the corner (and regular edge elements in tRble 1, similar conclusions can be drawn. In this tablefor
rest) in a mesh with 32 elements. the first three TE modes:- and H-field) are given by using

a different number of degrees of freedom. The comparison
ween the two types of meshes with the new elements and

edges when we use the new elements instead of using Pr% ) > A
conventional edge elements. with only regular elements is obvious from the results in the

In Fig. 4, we show both transversal electric and magneﬁ%ble' An improvement is achieved when the singular elements

fields calculated by using the singular base functions in fo@fe¢ Used-

singular elements surrounding the singularity (and with regular ) o

functions in the rest) at some points in a mesh of 32 elemerlts, Shielded Microstrip Line

The field just in the corner has not been calculated because itn order to show how the elements work when hybrid modes
is obviously infinite. are analyzed, a shielded microstrip line has been studied (see
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Fig. 6. Transverse electric and magnetic fields calculated by using six
singular elements surrounding the corner (and regular edge elements in the
rest) in a mesh with 24 elements.

Fig. 8). We analyze one half of the structure, imposing the
magnetic-wall condition along the plane of symmetry. The
initial mesh was refined to check convergence. Table Il gives
the results fork, rad/mm of the dominant mode with the phase
constant3 = 0.5 rad/mm and the second mode with= 1
rad/mm. We have employed thg formulation in this case.

The given results can be compared with those in [12]. Once
again, the use of the singular elements speeds convergence and
increases accuracy, particularly when relatively few degrees
of freedom are used.

W
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Fig. 7. Double-ridge waveguidei?’
H = 10.16 mm, h = 2.794 mm.

<-—w

TABLE |
k. (RAD/MM) FOR THE FIRST THREE TE MODES
(DouBLE-RIDGE WAVEGUIDE, E- AND H -FIELD)

12.7

mm, w

2129

= 2.54 mm,

D. of F. REG. REG. REG.| SIN. SIN. SIN.
76 .1424 | .6421 | .6895 | .1431) .6379| .6809
H 124 .1455 | .6203 | .6730 | .1439| .6181 | .6716
204 .1430 ] .6315] .6789 | .1434 | .6306 | .6779
H 276 .1447 | .6195 | .6718 | .1437| .6190| .6713
392 1432 | .6266 | .6757 | .1436| .6263 | .6754
H 488 14441 .6193 | .6714 | .1438| .6191 | .6712
1246 .1435 | .6215| .6726 | .1437 | .6215| .6726
H 1414 14411 .6192 | .6712 | .1438( .6192 | .6711
ref.[11] .1440 | .6190 | .6710
1 L ]
1 -
€ |
(0]
[ W o]
, . _
h &
r

!

In all the cases analyzed, spurious modes have not beeNg  shielded microstrip line = 12.7 mm, h = 1.27 mm, L = 12.7

detected.

mm, w = 1.27 mm. ¢, = 8.875.
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TABLE I
ko (RAD/MM) FOR THE FUNDAMENTAL MODE (3 = 0.5 RAD/MM) AND
THE SECOND MODE (3 = 1 RAD/MM) OF THE MICROSTRIP IN FIG. 8

Degrees of | Dominant  Mode Second Mode
Freedom [~ REG.  SING, | REG. SING.
221 .1958 .1934 5523 .5460
454 .1951 .1934 .5499 .5485
883 .1946 .1932 .5489 5481
1622 1941 .1932 5476 .5470
ref.[11]
H 1934
E .1953 542

IV. CONCLUSIONS
Edge elements achieve an adequate representatiéh Hf

(3]

(4]

(5]

(6]

(7]

(8]

El

[10]

(11]

[12]

vectorial fields because only tangential continuity is imposed.
Because of the correct representation of the null space of curl

operator, spurious modes are confined in the zero eigenvaliies

and do not pollute the spectrum. However, conventional ed
elements do not properly model the transverse field in tl
neighborhood of sharp edges. This leads to a slow converge
and a poor approximation of fields near to the edges.

In this paper, we have introduced a new edge element whi
in addition to the usual advantages of edge elements (rema
of spurious modes, ease of imposing boundary condition

does a much better job of modeling the field and its curl negy.

element.
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