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A New Edge Element for the Modeling of Field
Singularities in Transmission Lines

and Waveguides
Jośe Ma Gil and Jon P. Webb,Member, IEEE

Abstract—Edge finite elements are widely used in the analysis
of waveguides and transmission lines. They have tangential con-
tinuity and they do not produce spurious modes. However, they
cannot model the singular behavior of the transverse fields in the
neighborhood of sharp edges. This fact limits the accuracy of the
representation of the fields and the order of convergence of the
method. In this paper, we present a new edge element in which
the singular approximation of the three fields components and the
correct modeling of the curl is incorporated. The development
of the basis functions is described. Some numerical results for
waveguides with sharp metal edges are shown in order to validate
this theory.

I. INTRODUCTION

T HE presence of field singularities in many common
transmission lines and waveguides has led to several

publications over the last few years, which have focused on
the improvement of the convergence and approximation of
the unknown function in the finite-element method (FEM). In
the scalar case (quasi-TEM analysis of transmission lines and
homogeneous waveguide analysis) special finite elements—
called singular elements—have been developed [1], [2].

In the case of full-wave analysis, a nodal element with
singular approximation of transverse-field components was
presented in [3]. Edge elements, which avoid the problem of
the continuity of the transverse component on sharp edges
and remove the spurious modes, have been quickly adopted
by the users of the FEM. However, these elements do not
properly model the singular field because they use polynomials
as basis functions [4]. When the problem to be analyzed
has singularities, the order of convergence is very poor and
the transversal fields in the singular zones are not accurately
computed.

In [5], a new edge element with singular approximation
of the fields was presented. The relative complexity of this
element and the lack of results published to date have justified
the search for another solution.
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Fig. 1. The new singular-edge element.

This paper introduces a singular-edge element with a correct
approximation of the singular transverse-field component as
well as the axial component, according to Meixner’s theory
[6]. The curl of the transversal field is also adequately mod-
eled. The result is an element which can easily be incorporated
in a standard finite-element code and has important improve-
ments over other methods with regard to the convergence and
approximation of fields.

Some common waveguides with sharp metal edges are
analyzed in order to check the improvement achieved by using
the new element.

II. THE NEW EDGE ELEMENT

The new edge element is an hybrid nodal/edge element
with six tangential unknowns associated with the edges, and
six axial unknowns associated with the vertices and midpoint
node of the edges (see Fig. 1). For the electric field, the
transverse component is approximated by using vectorial
shape functions and the axial component by scalar shape
functions (the same is true for the magnetic field).

A. Behavior of Field Components in the
Neighborhood of Sharp Edges

It is known that in the neighborhood of an edge, the field
components have the following behavior:

(1)

where is the radial distance from the edge andis the order
of the singularity [6].

The singular field, in a small area around the singularity,
is considered to be a static field. The dynamic component is
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Fig. 2. Mapping of new element.

regular. On the other hand, the behavior of the transverse curl
must be

(2)

These singular behaviors are represented by approximating the
unknown function in the following way.

B. Geometric Transformation

We begin by describing the geometric transformation em-
ployed to move the approximation of the field from local to
real space (, ).

The elements of the mesh in real space are mapped into
the reference element (unit square) by means of the following
transformation (see Fig. 2):

(3)

where , , are the coordinates of the vertices of the
element, and , are the triangular polar coordinates.

It can be seen that at the point , the Jacobian vanishes
and the transformation is not invertible at this point. The
straight lines defined by constant are converted to straight
lines passing through vertex one.

By studying this geometrical transformation, we can make
the following conclusions:

(4)

where ( ) are cylindrical polar coordinates centered on
vertex one. We can see that radial distances in real and
local spaces are proportional and, therefore, along any radial
direction constant, passing through the singular point
(vertex one), the singular behavior given by (1) and (2)
becomes

(5)

In order to do the integration in the unit square, a 16-
point quadrature formula has been employed. We have found
that this order of integration is enough to get satisfactory

results. The integrals which appear in the formulation could
also be done in closed form with the help of a conventional
symbolic mathematics program, but this option is complicated
and it ruins the simplicity with which the new element can be
incorporated in a standard finite-element code.

C. Approximation of the Transverse Component
of the Unknown Function

The transverse field is approximated in the form

(6)

where , are triangular polar coordinates (see Fig. 2). In the
following, we show how the basis functions are built.

The simplex or baricentric coordinates for a triangle are,
, and . They are related to, as follows:

(7)

Starting from these, we build the following vector basis
functions:

(8)

The approximation of the regular term (dynamic compo-
nent) then corresponds to an ordinary Whitney element [7]. It
contributes a curl which is constant.

For the singular term, three degrees of freedom (one on each
edge) are added to the Whitney element. To do this, we define

(9)

and we build the two following functions:

(10)

In this way, the singular term (5) in the approximation of the
transverse component (static term) is incorporated, as can be
seen. It is also obvious that these functions are irrotational and,
therefore, they do not contribute any term to the curl. In order
to obtain the corresponding approximation of the transverse
component of the curl, the basis is completed with

(11)

It is easy to prove that

(12)

where is a constant, then obtaining the expected behavior
(5).
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By observing the functions, we can see that each has only
a tangential component along its own edge, but not along the
other edges. The tangential continuity between the elements
can be easily achieved by matching the parametersin
the usual way. It can also be seen that if we associate the
vertex one with the singular point, we obtain an element that
is compatible with regular (fully first-order) edge elements,
adjacent to the edge opposite vertex one. In fact, along this
edge ( ) we have

(13)

which has the same variation as a regular fully first-order
element.

D. Approximation of the Longitudinal Component
of the Unknown Function

A nodal approximation supported by the vertex and the
midpoint node of the edges, is enough to approximate the
axial component. However, we again need to incorporate the
variation predicted by the theory (1). This is achieved by using
the following six-node scalar singular element described in [8].
In this element, the axial-field component is approximated by
means of the following:

(14)

(15)

It is easy to demonstrate that the unknown function is
approximated as follows:

(16)

where and are polynomials.
The radial gradient is

(17)

In this way, the longitudinal component of field and its
gradient are properly modeled. Along the edge opposite to
vertex one, this element is compatible with the Lagrange
quadratic elements.

In summary, the developed element has the following
characteristics: singular approximation of the three field com-
ponents according to the Meixner’s theory for any order
of singularity, tangential continuity along the edges of the

element allowing for the discontinuity of normal components,
compatibility with standard edge elements along the edge
opposite to the singularity, adequate modeling of the curl, and
removal of spurious modes.

III. SOME NUMERICAL RESULTS

In order to check the behavior of the new element we
discretize the classical functional

(18)

in terms of the electric field [9], or

(19)

in terms of the magnetic field [10], where and are the
relative permeability and permittivity tensors, respectively,
is the cross section of the waveguide andis the free-space
wavenumber

(20)

We analyze several waveguides with field singularities,
comparing the results obtained with the new element and
those calculated by using a fully first-order edge element
with six degrees of freedom and regular approximation for
the transverse component and a six-node Lagrange element
for the axial component. When we use a mesh with the new
element, the singular point is surrounded by these elements.
In each case, the size of the singular elements is chosen to
be much smaller than the cutoff wavelength of the mode we
are studying.

A. Rectangular Vaned Waveguide

The cross section is given in Fig. 3. This structure has
a metallic edge which is associated with a singularity of
order . There is a plane of symmetry, but only the
modes with a magnetic-wall condition on this plane will be
singular. We have calculated the with the phase constant

rad/cm, corresponding to the first TE singular mode
and then the cutoff wavenumber (20). The convergence of
the method by using the new singular elements (four elements
surrounding the singularity, the rest regular elements) and by
using only regular elements in the mesh has been studied.
In order to properly study the convergence, uniform meshes
have been employed, and the number of degrees of freedom
is increased by means of successive regular refinements of the
original mesh. The results for the , by using both - and

-field are given in Fig. 3. In this figure we can see that by
using the new elements, the value of convergence is achieved
with much fewer degrees of freedom. This can lead to an
important computational economy and a better approximation
of divergent transversal fields in the neighborhood of sharp
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Fig. 3. kc (rad/cm) of the first singular TE mode, for the rectangular vaned
waveguide (A = 1 cm), versus the number of degrees of freedom (E- and
H-field). : with singular elements. : only regular elements.: [2].

Fig. 4. Transverse electric and magnetic fields, calculated by using four
singular elements surrounding the corner (and regular edge elements in the
rest) in a mesh with 32 elements.

edges when we use the new elements instead of using the
conventional edge elements.

In Fig. 4, we show both transversal electric and magnetic
fields calculated by using the singular base functions in four
singular elements surrounding the singularity (and with regular
functions in the rest) at some points in a mesh of 32 elements.
The field just in the corner has not been calculated because it
is obviously infinite.

Fig. 5. kc (rad/cm) of the fundamental mode, for the single-ridge waveguide
(A = B = 0:5 cm; a = b = 0:25 cm), versus the number of degrees
of freedom (E- and H-field). : with singular elements. : only regular
elements. : [2].

B. Single-Ridge Waveguide

The geometry is given in Fig. 5. The order of singularity is
and it has a plane of symmetry; therefore, we analyze

one half of the structure. Again, we study the convergence by
using regular refinements of uniform meshes. In one series
of these meshes, six singular elements surrounding the edge
are used and in the other series only regular elements are
employed. The mode analyzed was the fundamental (TE). The
results for both the - and -field can be seen in Fig. 5. It
can also be noticed how the value of convergence is achieved
much more quickly by using the new elements instead of using
regular edge elements.

In Fig. 6, we again show both transversal and electric fields
computed from singular functions in six singular elements
surrounding the corner (and from regular functions in the rest)
in a mesh with 24 elements.

C. Double-Ridge Waveguide

The section is shown in Fig. 7. This structure has been
solved by many authors and many different methods. Because
of the symmetries, only a quarter of the section is meshed and
we again employ meshes with singular elements and with only
regular elements. Because of the geometry of this structure,
uniform meshes of the section cannot be obtained; therefore,
it is not strictly correct to obtain a curve of convergence as in
the previous cases. However, by observing the results given in
Table I, similar conclusions can be drawn. In this table,for
the first three TE modes (- and -field) are given by using
a different number of degrees of freedom. The comparison
between the two types of meshes with the new elements and
with only regular elements is obvious from the results in the
table. An improvement is achieved when the singular elements
are used.

D. Shielded Microstrip Line

In order to show how the elements work when hybrid modes
are analyzed, a shielded microstrip line has been studied (see
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Fig. 6. Transverse electric and magnetic fields calculated by using six
singular elements surrounding the corner (and regular edge elements in the
rest) in a mesh with 24 elements.

Fig. 8). We analyze one half of the structure, imposing the
magnetic-wall condition along the plane of symmetry. The
initial mesh was refined to check convergence. Table II gives
the results for rad/mm of the dominant mode with the phase
constant rad/mm and the second mode with
rad/mm. We have employed the formulation in this case.
The given results can be compared with those in [12]. Once
again, the use of the singular elements speeds convergence and
increases accuracy, particularly when relatively few degrees
of freedom are used.

In all the cases analyzed, spurious modes have not been
detected.

Fig. 7. Double-ridge waveguide.W = 12:7 mm, w = 2:54 mm,
H = 10:16 mm, h = 2:794 mm.

TABLE I
kc (RAD/MM) FOR THE FIRST THREE TE MODES

(DOUBLE-RIDGE WAVEGUIDE, E- AND H-FIELD)

Fig. 8. Shielded microstrip line.H = 12:7 mm, h = 1:27 mm,L = 12:7

mm, w = 1:27 mm. "r = 8:875.
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TABLE II
ko (RAD/MM) FOR THE FUNDAMENTAL MODE (� = 0:5 RAD/MM) AND

THE SECOND MODE (� = 1 RAD/MM) OF THE MICROSTRIP IN FIG. 8

IV. CONCLUSIONS

Edge elements achieve an adequate representation of
vectorial fields because only tangential continuity is imposed.
Because of the correct representation of the null space of curl
operator, spurious modes are confined in the zero eigenvalues
and do not pollute the spectrum. However, conventional edge
elements do not properly model the transverse field in the
neighborhood of sharp edges. This leads to a slow convergence
and a poor approximation of fields near to the edges.

In this paper, we have introduced a new edge element which,
in addition to the usual advantages of edge elements (removal
of spurious modes, ease of imposing boundary conditions),
does a much better job of modeling the field and its curl near
singularities. Analysis of some typical waveguides confirms
that the results are improved in relation to conventional edge
elements with the same number of degrees of freedom per
element.
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